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Abstract—This paper1 studies the spectrum sharing of fem-
tocell base station (FBS) and macrocell base station (MBS)
in a heterogeneous network setting. We allow femtocell users
(FUEs) to re-use the resource blocks of certain macrocell users
(MUEs) who are categorized as outdoor users. We study the
design tradeoff between MUE spectral diversity and the need
to accommodate femtocells by intelligently determining when
an MUE should be allowed to change resource allocation.
Modeling the wireless channel state as a Markov chain, we
formulate the decision as a Markov decision process (MDP). In
the case of homogeneous channels environment, we reduce the
MDP complexity, which enables the MBS to form the optimal
decision matrix by solving only two equations. Our closed form
expressions reveal the quantitative relationship among system
parameters. Hence, we obtain an easy policy for the optimal
channel switching. Our scheme is also robust to the uncertainties
in the Markov models.

I. I NTRODUCTION AND BACKGROUND

One recent focus on heterogeneous networking centers
on the deployment of femtocells by cellular users to im-
prove indoor coverage and data rate in homes or small of-
fices where traditional macrocell coverages are unsatisfactory.
Given operator-approved FBSs, subscribers may set up their
own femtocells under contract and registration. The distributed
nature of femtocell deployment can reduce the cost of cell
coverage planning and easily adapt to the potentially time-
varying need of special user groups or special events. From the
network operator’s point of view, femtocells offload the macro-
cell traffic load which helps improve macrocell’s throughput
and coverage. In addition to the improved signal quality and
data rates, FBS can also use low transmission power to reduce
interference to nearby stations. The low signal power improves
frequency reuse, and increases the number of users in the
same area for spectrum sharing. FBSs typically use generic
broadband connections such as DSL or Data Over Cable
Service Interface Specification (DOCSIS) as backhaul links
to connect with the cellular backbones for better control and
operation.

Despite many clear advantages, the distributed nature of
femto-cell deployment also poses a number of new chal-
lenges. Foremost among them are problems arising from the
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distributed resource allocation and uncoordinated spectrum
sharing between femtocell and macrocell users. The main
focus of this work is to mitigate mutual interference due to the
spectrum sharing by FUE and MUE. In particular, this paper
focuses on adapting the physical resource block (PRB) of the
MUEs in time-frequency or spatial-frequency domain such that
interference from the FBS in downlink transmission on MUEs
can be contained and managed in a controlled manner.

There have been some recent works on femtocell interfer-
ence mitigation. Power control can reduce the interferencein
areas with strong coverage from the MBS [2]-[4]. In [5], an
adaptive power control is shown to decrease the transmission
power of the femtocell in order to maximize frame utilization.
A centralized and distributed adaptive FBS power calibration
algorithm is introduced in [6] by using feedbacks to adapt
FBS transmission power under a supervision. Authors in [7]
study the case when the FUEs form a subset of the MBS user
group. Beamforming techniques can also mitigate femtocell
interference in MIMO systems, as considered in [8]. Limiting
spectrum sharing by only reusing outdoor MUE resource
blocks is discussed in [9]. This should further reduce the
impact FBS interference. The authors consider probabilistic
assignment of PRBs to FUEs by reassigning outdoor MUE’s
PRBs with higher access probability.

In this paper, we consider a scenario in which the FBS
utilizes a delayed PRBs assignment information from the
MBS received through the Internet backhaul or during MBS
downlink. The FBS would assign the PRBs occupied by out-
door MUEs to the FUE after following the MBS assignment
information. In an overloaded system, FBS has to reuse PRBs
assigned to some MUEs. The strategy is to let FUEs follow
certain outdoor MUEs by reusing their PRB. In this scenario,
if the outdoor MUEs receive PRB assignment that are long
term (as in semi-persistent allocation) [11], it should be easier
for FUEs to follow and coexist. However, slower PRB re-
allocation means that these MUEs tend to benefit less from
spectral diversity. On the other hand, faster PRB re-assignment
may lead to better MUE diversity, but the FBS interference can
become more severe to some nearby MUEs. In other words,
the outdated PRBs assignment information at FBS diminishes
its ability to shadow outdoor MUE PRBs.

Our design objective is to maximize the expected weighted



sum throughput from both the MUE and the FUE in the down-
link. We consider each PRB cluster as a physical layer channel
whose state transition is Markovian. We then formulate the
PRB cluster (channel) reassignment decision as a Markovian
decision process (MDP) of finite horizon. We will show that
when the MBS has to choose between homogeneous channels
(PRB clusters), the MUE reassignment decision matrix is
optimally obtained by solving only two equations, which
is a large reduction to the MDP complexity. Our scheme
maximizes the total expected future reward which balances the
performance of MUEs and FUEs. The proposed approach has
many advantages over the other existing schemes. It increases
the spectrum utilization due to the reuse of the same outdoor
PRBs. Our scheme also allows the network to keep the balance
between the MUE diversity and the FBS access. Using the
existing network feedback signals allows the FBS to access
the network without being aggressive to the indoor MUEs and
with no signaling overhead.

The rest of the paper is organized as follows: In Section
II, we describe the system model for the problem of MUE
resource re-allocation problem. We elaborate the optimiza-
tion objective and the proposed MDP approach in Section
III. In Section IV, we prove the closed form solution for
homogeneous multiple channels and discuss the complexity
reduction. In Section V, we present the simulation results with
comparative results from greedy algorithm in which MUE only
maximizes its own reward regardless the FBS. Our numerical
results also show the robustness of our scheme to uncertainties
in channel state transition probabilities.

II. SYSTEM MODEL

We consider a heterogeneous network environment where a
macrocell base-station (MBS) covers both indoor and outdoor
users whereas an overlaying FBS serves some of the indoor
users through channel (PRB) reuse as shown in Figure 1. We
focus only on the downlink direction in this paper, although
uplink issues are similar. We assume that FBS has a backhaul
link to connect with the cellular core networks as in [10]
and can receive MBS allocation information (known as the
Downlink Control Information (DCI) in LTE). This DCI signal
is delayed such that it is impossible for the FBS to perfectly
synchronize with MBS allocation and assign only outdoor
PRBs to FBS.

Still, the FBS can use the DCI along with its overheard
MUE feedback information (ACK/NAK) to estimate and clas-
sify the allocation of various PRBs. We consider three types
of PRBs:unoccupied, outdoor, and indoor. If the FBS is able
to overhear a strong ACK/NAK signal from the MUE, then
this MUE will be marked as an indoor user. Otherwise, it is
outdoor. The FBS picks unoccupied PRBs to allocate to its
FUEs first. However, in a congested network, there will not
be enough PRBs unoccupied, then the FBS picks the PRBs
from any of the outdoor users randomly and reassigns its
PRBs to an FUE, as illustrated in Figure 2. The FBS learns
the allocated PRBs from the DCI. However, this information

Fig. 1: Chasing the shadow scheme description.

comes with a delayD on the order of milliseconds due to
the Internet latency. As a result, the received DCI information
may be outdated. Suppose the MBS maintainsM channels that
can be swapped to this MUE for diversity gain. As the MUE
downlink PRBs vary, the received DCI by the FBS may be
outdated. When the MBS swaps the PRB cluster assignment
of the followed MUE with another MUE, the FBS does
not immediately follow. The original MUE channel may be
swapped to an indoor MUE with a certain probabilityq, which
can be estimated based on the number of users connected to
the MBS and their activities. As the FBS continues to transmit
on the “swapped PRB cluster”, it may cause interference with
the indoor MUE with probabilityq. Thus, it is clear that the
longer the MUE can hold on to its PRBs, the easier it is for
the FBS to follow and not to cause potential interference to
an indoor MUE.

Unlike the traditional cognitive radio networks, interfer-
ing heterogeneous FBS and MBS are mostly run by the
same network operator or co-operative network operators. A
collaborative resource allocation presents overall advantages,
particularly by the “more pro-active” MBS in re-assignment
PRB clusters to outdoor MUEs. In particular, there will be
a reward for the FBS if it is able to follow the outdoor
MUE correctly. On the other hand, FBS may cause a penalty
C0 if it ends up using the PRB channel of an indoor MUE
owing to the outdated DCI. That is to say,C = q · C0 is
the average penalty when accounting for probability that the
evacuated PRB channel is given to an indoor MUE whereC0

is proportional toD.
We assume that we haveM total MUE downlink chan-

nels (PRB clusters). Each channeli has N states and its
state change follows a Markov chain model with transition
probability matrixPi. We consider one generic MBS and one
generic FBS. We assume the MBS is able to know the state of
each channel using the CQI sent by the MUE. In the case of



Fig. 2: Chasing the shadow scheme description.

N = 2, the channel gain is alternating between a high value
(good state) and a low value (bad state). We defineγi

k as the
signal to noise ration (SNR) of the channeli in statek and
γi(n) as the SNR of channeli at time n. The MBS has to
decide either to keep the MUE in the same channel or move it
into a new one based on the MUE diversity gain, FBS reward,
and cost.

III. PROBLEM FORMULATION

We study the scheme in two cases(a) case of heterogeneous
channels, and will be studied in this section, and(b) homoge-
neous channels where the channel charachteristics are identical
for all PRBs. Homogeneous channels can be considered a
special case and will be discussed in the next section. In our
study, the MBS decides between moving the outdoor MUE
to another channel or staying in the same channel. The FBS
only acquires outdated DCI from the MBS. The decision for
the MUE to seek a new channel or stay in the same channel
can be optimized by seeking maximum expected return for its
decisions in an MDP formulation.

A. Optimum Policy

Our design objective is to make the MBS decision to
maximize the expected total reward, which is a weighted
sum of MUE and FUE performance. The problem can be
formulated as an MDP. To define the MDP we need the
following notations. LetS(n) be the state vector at timen,
which contains the SNR values of all channel gains at time
n including the current channel occupied by the MUE. This
vector is defined as

S(n) =

















γ1(n)

γ2(n)

· · ·

γM (n)

C(n)

















, (1)

where we defineC(n) ∈ A as the current channel at timen,
whereA = {1, 2, · · · ,M} is the set of possible channels that
MUE can use including the currently occupied one. Hence

Sℓ ∈ S is one of the possible states, whereS is the set of
M ×NM states for the system.

We defineV (n|Sℓ,C(n) = i) as the accumulated reward
from timen till a finite horizonT when the MUE is occupying
channeli, while the system state isSℓ. Our goal is to maximize
V (1|Sℓ, i) based on the observation of channel stateSℓ at time
n = 1. Eq. (2) describes the future reward expression in our
system.

V (n|Sℓ,C(n) = i) = max
j

(ai(n), {bj(n)}j 6=i). (2)

The first argument,ai(n), is the accumulated reward when
MBS chooses to keep the channel. The FBS gets a rewardR,
the FBS rate, and MUE has the same rate as the previous time
slot. Henceai(n) is defined as:

ai(n) = w log(1 + γi(n)) + (1− w)R+

λES(n+1)(V (n+ 1|S(n+ 1),C(n+ 1) = i)),
(3)

where E denotes expectation over the different states. The
second one,bj(n), is the set of rewards when the MUE channel
is changed to channelj, since there is a costC and the MUE
has a new rate due to the change of the channel.

bj(n) = w log(1 + γj(n)) + (1− w)C+

λES(n+1)(V (n+ 1|S(n+ 1),C(n+ 1) = j)).
(4)

The future reward is weighted byλ, whereλ ≤ 1. The weight
w represents the importance of the MUE relative to the FBS.
Hence, the fairness between the FUE and the MUE can be
adjusted by the parameterw which can be set by the MBS.
In other words, increasingw gives more priority to the MUE
over the FUE. The expectation in the future reward term is
with respect to the channel gainsS. This MDP problem can be
solved using backward induction and the problem complexity
is O(T ×NM ×M).

B. Greedy Policy

We compare our policy with the greedy policy where the
MBS maximizes the MUE diversity gain regardless the FBS.
Greedy policy is exactly the same as optimal policy when
w = 1 and λ = 0. The decision policy can be obtained by
solving the following equation

max
1≤j≤M

(log(1 + γj(n))). (5)

IV. MDP COMPLEXITY REDUCTION

The MDP complexity depends on the number of available
channels and the time horizon. In this section we prove that
the MDP problem (generally can be executed as a table-look-
up algorithm) can be reduced to solving couple of equations
in the case of homogeneous channel without any performance
degradation.



A. Reduction for 2 Homogeneous Channels

We consider two homogeneous channels where the tran-
sition probabilities and the channel gains for each state are
the same for all channels, then the channel indexi can be
removed to simplify notations. We assume that each channel
has 2 channel states with self transition probabilitiesp1 andp2
and gainsγ1 and γ2. Due to the nature of the homogeneous
channel and for the simplicity of notations, we redefine the
state at timen as S(n)=[current channel state, other channel
state]. In other words,S1 is when both channels are in good
state,S2 is when the current channel is good and the other is
bad,S3 is the opposite, andS4 is when both bad.

Lemma 1: Channel switching could only happen inS3.
The proof is in the appendix. The intuition behind is clear,
the MBS does not need to switch the channel if the current
channel is good because the other channel is either worse or
the same, where switching introduces only a cost. Similarly,
if both channels are in bad states, the MBS decides to stay on
the same channel.

The following theorem can be used to complete the decision
matrix for S3 without solving the backward induction.

Theorem 1: If the following conditions are satisfied

1)

(1− w)(1− λ(p1 + p2 − 1))(R− C) < −wΓ, (6)

whereΓ = log(1 + γ2)− log(1 + γ1)
2) There existsK such that

K = min

{

k :
wΓλk+1(p1 + p2 − 1)k+1

− 1

p1 + p2 − 2
Γ < (1−w)(R−C)

}

,

(7)

then, channel switching happens inS3 for stage1 to T −
K otherwise, the optimal decision is to stay in the current
channel.

Proof 1: At stageT , the necessary and sufficient condition
to switch channel in S3 is

R+ w log(1 + γ2) < C + w log(1 + γ1). (8)

Suppose the decision at timeT −K +1 is to NOT move, the
necessary and sufficient condition to move atT −K can be
obtained as follows:
For all n > T −K

V (n|S1) = V (n|S2) = Vg(n).

V (n|S3) = V (n|S4) = Vb(n).
(9)

Hence, the recursion can be written as

Vg(n) =(1− w)R+ w log(1 + γ1) + λ(p1Vg(n+ 1) + (1− p1)Vb(n+ 1)).

Vb(n) =(1− w)R+ w log(1 + γ2) + λ(p2Vb(n+ 1) + (1− p2)Vg(n+ 1)).

The condition to move at stageT −K is

λ(p1 + p2 − 1)(Vb(T −K + 1|S3)− Vg(T −K + 1))+

(1− w)(R− C) + wΓ
stay
≷

move
0.

(10)

Hence the first movement moment,K, is the minimumk that
satisfies the inequality

w
λk+1(p1 + p2 − 1)k+1 − 1

p1 + p2 − 2
Γ < (1− w)(R− C). (11)

If the decision atT − K is to move, then the decision at
n = 1, · · ·T −K − 1 is to move if and only if

w log(1 + γ1) + (1− w)C + λE(V (n+ 1|S2)) >

w log(1 + γ2) + (1− w)R+ λE(V (n+ 1|S3)),
(12)

where

E(V (n+ 1|S2)) = p1(1− p2)V (n+ 1|S1) + p1p2V (n+ 1|S2)

+ (1− p1)(1− p2)V (n+ 1|S3) + (1− p1)p2V (n+ 1|S4).

E(V (n+ 1|S3)) = p1(1− p2)V (n+ 1|S1) + p1p2V (n+ 1|S3)

+ (1− p1)(1− p2)V (n+ 1|S2) + (1− p1)p2V (n+ 1|S4).

By subtracting the two arguments, the threshold is given as

(1− w)(R− C) + w(log(1 + γ2)− log(1 + γ1))+

λ(p1 + p2 − 1)(V (n+ 1|S3)− V (n+ 1|S2))
stay
≷

move
0.

(13)

Assuming that the decision at stagen+1 is to move, then the
decision will be also to move for all stages from1 to n if and
only if Eq. (6) is satisfied.
This means that the base station can solve Eq. (7) and obtain
the optimum value ofK which corresponds to the first moving
time, and then apply the condition at Eq. (6). If this condition
is satisfied, then the decision is always to move till stage 1.
That is to say, the complexity is reduced and the MBS can
form the decision matrix by solving only 2 equations instead
of solving the whole backward induction steps. Hence, the
MBS can follow an easy optimum policy instead of forming
a complex lookup table.

B. Generalizing for Multiple Homogeneous Channels

When channels are homogeneous, we can reduce the num-
ber of states fromM × 2M to 2M . By the nature of the
homogeneous channel, the states that have the same current
channel and the same number of good and bad channels
are redundant. For instance, whenM = 3, the states [G
B G] and [G G B] are equivalent and one of them can be
removed. Specifically, letSk, k = 1, 2, · · ·M , represents that
the current channel is good, and in addition there areM − k
good channels andk bad channels. On the other hand,Sk,
k = M + 1,M + 2, · · · 2M , represents the current channel
is bad and there are2M − k good channels andk −M bad
channels. Again, it is clear that when the current channel is
good, the decision is always to stay regardless the state of any
of the other channels. Switching will happen only when the
MUE is currently on the bad channel and one or more of the
other channels are in a good state. In statesSk, k ≥ M + 1,
the MBS decides either to stay in the same bad channel or



move to one of the other good channels.

V (n|Sj) =

max

{

w log(1 + γ2) + (1− w)R+ λE(V (n+ 1|Sj))

w log(1 + γ1) + (1− w)C + λE(V (n+ 1|Sk))

(14)

Following the same argument of Eq. (9) to obtain the first
moving moment, the values of the rewards for all the channels
that are currently in good state are the same and equal toVg(n)
for all n > T −K. Similarly, the ones that are currently on a
bad channel have equal rewards,Vb(n).

V (n|S1) = · · · = V (n|SM ) = Vg(n).

V (n|SM+1) = · · · = V (n|S2M ) = Vb(n).
(15)

By subtracting the two arguments, we obtain the same results
as Eq. (10) which is the same recursion, hence, the same closed
form solution obtained in Theorem 1.

V. SIMULATION RESULTS

In this section we evaluate the performance of our scheme.
In our simulations we have finite horizonT = 2000. We
also haveR = 1 and C = −2. The performance shown
in the simulations is normalized over the total number of
channels, states, and the time horizon. We conducted the
simulations in two cases. The first one assumes that the
transition probabilities are known and the second assumes that
they are estimated with errors to study the robustness of our
scheme. All simulations are conducted for one femtocell that
follows one of three outdoor users. Each user has a two state
channel.

A. Perfect Transition Probabilities

We assume that the transition probabilities of all the chan-
nels are known. We draw the total MDP reward, FBS reward,
and the MUE rate for the optimal MDP scheme versus the
greedy algorithm. As shown in Figure 3, as the weight in-
creases, the gap between the greedy scheme and ours decreases
because of the increasing emphasis on MUE. In the case of
small weights, we emphasize the FBS over the MUE. Hence,
the policy is to always stay and the FBS reward equals toR.
The values of self transition probabilities are0.8, 0.85, and
0.9.

In Figure 4, all the channels have2 states with differentγi
1

andγi
2 values. We plot the different rewards versus the ratio

γi
2/γ

i
1, which we assume in this setup to be the same for all

i. We call this ratioL. As shown in the figure, asL increases,
the optimum MDP and FBS reward increases. As the ratio
becomes closer to1, the greedy policy becomes closer to the
optimal. The explanation is that the gain value of the best
channel is better than all other channels even in their good
states.
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Fig. 3: Greedy versus our optimal scheme.
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Fig. 4: Greedy versus our optimal scheme for different SNR
ratios.

B. Channel Uncertainty

In this subsection, we show the robustness of our scheme
when estimation errors exist in the transition probabilities. In
Figure 5, the total reward, MUE rate, and FBS reward are
plotted by applying the optimal scheme, however using the
estimated transition probabilities instead of the real ones. In
our simulations,R = 3, C = −2, and the maximum error
between the true transition probabilities and the estimated one
is 0.3. As shown in the figure when the weight is small



or large, the rewards are as the optimal ones because the
impact of transition probabilities is not significant. At the small
weights, the policy is always to stay regardless the transition
probabilities. Similarly, at large weights the policy is a greedy
policy that will maximize the current MUE rate. The maximum
loss in the total reward is about20%. In summary, the scheme
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Fig. 5: Robustness of the MDP scheme.

is robust to estimation errors.

VI. CONCLUSION

In this paper we introduce a novel MUE resource allocation
scheme to decrease the interference between the FBS and
indoor MUEs. We use the fact that FBS is using the DSL as its
backhaul and is part of the same network as the MBS. Hence,
FBS and MBS can communicate to exchange the resource
allocation information. However, this information could be
delayed so FBS may introduce interference on the indoor
users. Thus, the MBS optimize the tradeoff between MUE
diversity and FBS access chances. We formulate the problem
as an MDP and compared our optimal scheme with the greedy
algorithm. We have significantly reduced the MDP complexity
in the case of homogeneous channels. We also have done
simulations to show the robustness of our scheme. There
are open problems that can be addressed in the future work,
such as the case of multiple MUEs and FBSs and testing the
proposed schemes in the scenario of interfering FBSs. Another
issue is to derive the conditions for the greedy algorithm tobe
optimal. Also, the impact of the number of channels on both
MUE and FBS rates should be studied.

APPENDIX

Lemma 1 can be proven as follows:

Proof 2:

V (n|S1) = max

{

w log(1 + γ1) + (1− w)R+ λE(V (n+ 1|S1))

w log(1 + γ1) + (1− w)C + λE(V (n+ 1|S1))
(16)

Hencea1(n|S1) > b2(n|S1), where

E(V (n+ 1|S1)) =p21V (n+ 1|S1) + p1(1− p1)V (n+ 1|S2)+

(1− p1)p1V (n+ 1|S3) + (1− p1)
2V (n+ 1|S4).

Similarly we can prove the same forS4. Repeating the same
steps forS2,

V (n|S2) = max

{

w log(1 + γ1) + (1− w)R+ λE(V (n+ 1|S2))

w log(1 + γ2)) + (1− w)C + λE(V (n+ 1|S3))
(17)

By subtracting the 2 arguments, the threshold is

(1− w)(R− C) + w(log(1 + γ1)− log(1 + γ2))+

(p1 + p2 − 1)(V (n+ 1|S2)− V (n+ 1|S3))
stay
≷

move
0,

which is always positive for slowly varying channel, i.e.,p1
and p2 are greater than 0.5 and it is clear thatV (n|S2) >
V (n|S3) for all n. Hence the decision will always be to stay.
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