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Abstract—This paper! studies the spectrum sharing of fem- distributed resource allocation and uncoordinated spectr
tocell base station (FBS) and macrocell base station (MBS) sharing between femtocell and macrocell users. The main
in a_heterogeneous network setting. We allow femtocell users ,¢ ;5 of this work is to mitigate mutual interference duette t

(FUESs) to re-use the resource blocks of certain macrocell users - . .
(MUEs) who are categorized as outdoor users. We study the spectrum sharing by FUE and MUE. In particular, this paper

design tradeoff between MUE spectral diversity and the need focuses on adapting the physical resource block (PRB) of the
to accommodate femtocells by intelligently determining when MUES in time-frequency or spatial-frequency domain suett th
an MUE should be allowed to change resource allocation. interference from the FBS in downlink transmission on MUEs
Modeling the wireless channel state as a Markov chain, we ¢an e contained and managed in a controlled manner.
formulate the decision as a Markov decision process (MDP). In Th h b t K femtocell interf
the case of homogeneous channels environment, we reduce the eref. av.e €en some recent works on em_ oce |r.1 erier-
MDP complexity, which enables the MBS to form the optimal €nce mitigation. Power control can reduce the interference
decision matrix by solving only two equations. Our closed form areas with strong coverage from the MBS [2]-[4]. In [5], an
expressions reveal the guantitative relationship among system adaptive power control is shown to decrease the transmissio
parameters. Hence, we obtain an easy policy for the optimal \,q\yer of the femtocell in order to maximize frame utilizatio
channel switching. Our scheme is also robust to the uncertainties . L . . .
in the Markov models A centralized and distributed adaptive FBS power calibrati
algorithm is introduced in [6] by using feedbacks to adapt

I. INTRODUCTION AND BACKGROUND FBS transmission power under a supervision. Authors in [7]

One recent focus on heterogeneous networking centglt’rgdy th; Carﬁf 'YVn:‘if]” tther::nliJEs formna SlL'be;igf tTe ]'CVIE]? us:Tr
on the deployment of femtocells by cellular users to i oUP- Beanio g techniques can aiso gate femloce

prove indoor coverage and data rate in homes or small (|)|?§erference in MIMO systems, as considered in [8]. Lingtin

fices where traditional macrocell coverages are unsatisfac E||oecktrum j_hanng Sy. on;y r_?ﬁ_s mgh oultéioforthMUE (;esoutrﬁe
Given operator-approved FBSs, subscribers may set up thepo o 15 discussed in [9]. This should further reduce the

own femtocells under contract and registration. The digtad 'mg?“;theE:f J?tsgegrse?gem?f bauﬁzgs’s'cznn&dsrtgg%?anﬁﬂfgt's
nature of femtocell deployment can reduce the cost of ¢ '9 y 'gning ou

coverage planning and easily adapt to the potentially time-lr?sj[hviv'th h|gr:erwaccesns ip()jrorbablllty.n fio in which the FBS
varying need of special user groups or special events. Hiem t S Ppaper, we consider a scenario N €

network operator’s point of view, femtocells offload the mwac utiizes a delayed PRBs assignment information from the

. ; . ; MBS received through the Internet backhaul or during MBS
cell traffic load which helps improve macrocell’s throughpuglown"nk. The FBS would assign the PRBs occupied by out-

d . In addition to the i d signal lit ; X
and coverage. 'n addition o the IMProved signal quaity ar %gr MUEs to the FUE after following the MBS assignment

data rates, FBS can also use low transmission power (o redm ormation. In an overloaded system, FBS has to reuse PRBs
interference to nearby stations. The low signal power imgso . ' S
y gnaip Ve igned to some MUESs. The strategy is to let FUEs follow

frequency reuse, and increases the number of users in %% . . : . )
q Y ?rtaln outdoor MUESs by reusing their PRB. In this scenario,

same area for spectrum sharing. FBSs typically use gene . .
broadband connections such as DSL or Data Over Cacﬁghe outdoor MUEs receive PRB assignment that are long

Service Interface Specification (DOCSIS) as backhaul lin g (as in semi-persistent allocation) [11], it should Bsier

to connect with the cellular backbones for better contra anOr FU.ES to follow and coexist. However, slower_ PRB re-
operation allocation means that these MUEs tend to benefit less from

Despite many clear advantages, the distributed nature 0F ctral diversity. On the other hand, faster PRB re-asségn

femto-cell deployment also poses a number of new Chgl_ay lead to better MUE diversity, but the FBS interferenae ca

lenges. Foremost among them are problems arising from ecome more severe to some nearby MUEs. In other words,
' e outdated PRBs assignment information at FBS diminishes

1This material is based on works supported by the National nSeie Its ab'“ty tQ shad.ow_out_door MUI_E PRBS' .
Foundation under Grants 0917251, 1147930 and gifts froritsBuinc. Our design objective is to maximize the expected weighted



sum throughput from both the MUE and the FUE in the down-
link. We consider each PRB cluster as a physical layer channe
whose state transition is Markovian. We then formulate the
PRB cluster (channel) reassignment decision as a Markovian
decision process (MDP) of finite horizon. We will show that
when the MBS has to choose between homogeneous channels
(PRB clusters), the MUE reassignment decision matrix is
optimally obtained by solving only two equations, which
is a large reduction to the MDP complexity. Our scheme
maximizes the total expected future reward which balartoes t
performance of MUEs and FUEs. The proposed approach has
many advantages over the other existing schemes. It ireseas
the spectrum utilization due to the reuse of the same outdoor
PRBs. Our scheme also allows the network to keep the balance
between the MUE diversity and the FBS access. Using the
existing network feedback signals allows the FBS to access
the network without being aggressive to the indoor MUEs and
with no signaling overhead. Fig. 1: Chasing the shadow scheme description.
The rest of the paper is organized as follows: In Section
Il, we describe the system model for the problem of MUE

resource re-allocation problem. We elaborate the optimizggmes with a delayD on the order of milliseconds due to
tion objective and the proposed MDP approach in Sectigfe Internet latency. As a result, the received DCI infoiorat

lll. In Section IV, we prove the closed form solution formay be outdated. Suppose the MBS maintdifishannels that
homogeneous multiple channels and discuss the complexiih be swapped to this MUE for diversity gain. As the MUE
reduction. In Section V, we present the simulation resulte W gownlink PRBs vary, the received DCI by the FBS may be
comparative results from greedy algorithm in which MUE onlgytdated. When the MBS swaps the PRB cluster assignment
maximizes its own reward regardless the FBS. Our numerigal the followed MUE with another MUE, the FBS does
results also show the robustness of our scheme to uncéstaing ot immediately follow. The original MUE channel may be
in channel state transition probabilities. swapped to an indoor MUE with a certain probabitjtywhich

can be estimated based on the number of users connected to
the MBS and their activities. As the FBS continues to transmi

We consider a heterogeneous network environment wher€rathe “swapped PRB cluster”, it may cause interference with
macrocell base-station (MBS) covers both indoor and outdo®€ indoor MUE with probabilityg. Thus, it is clear that the
users whereas an overlaying FBS serves some of the indtsgrger the MUE can hold on to its PRBs, the easier it is for
users through channel (PRB) reuse as shown in Figure 1. the FBS to follow and not to cause potential interference to
focus only on the downlink direction in this paper, althouggn indoor MUE.
uplink issues are similar. We assume that FBS has a backhaulnlike the traditional cognitive radio networks, interer
link to connect with the cellular core networks as in [10ing heterogeneous FBS and MBS are mostly run by the
and can receive MBS allocation information (known as thgame network operator or co-operative network operators. A
Downlink Control Information (DCI) in LTE). This DCI signal collaborative resource allocation presents overall atdygs,
is delayed such that it is impossible for the FBS to perfectarticularly by the “more pro-active” MBS in re-assignment
synchronize with MBS allocation and assign only outdod?RB clusters to outdoor MUEs. In particular, there will be
PRBs to FBS. a reward for the FBS if it is able to follow the outdoor

Still, the FBS can use the DCI along with its overhearMUE correctly. On the other hand, FBS may cause a penalty
MUE feedback information (ACK/NAK) to estimate and clasCo if it ends up using the PRB channel of an indoor MUE
sify the allocation of various PRBs. We consider three typ@ying to the outdated DCI. That is to say, = ¢ - Cp is
of PRBs:unoccupied, outdoor, and indoor. If the FBS is able the average penalty when accounting for probability that th
to overhear a strong ACK/NAK signal from the MUE, therevacuated PRB channel is given to an indoor MUE wh@ge
this MUE will be marked as an indoor user. Otherwise, it i proportional toD.
outdoor. The FBS picks unoccupied PRBs to allocate to itsWe assume that we havi/ total MUE downlink chan-
FUEs first. However, in a congested network, there will natels (PRB clusters). Each channelhas N states and its
be enough PRBs unoccupied, then the FBS picks the PR@ate change follows a Markov chain model with transition
from any of the outdoor users randomly and reassigns fisobability matrix P;. We consider one generic MBS and one
PRBs to an FUE, as illustrated in Figure 2. The FBS learggneric FBS. We assume the MBS is able to know the state of
the allocated PRBs from the DCI. However, this informatiorach channel using the CQI sent by the MUE. In the case of

Macrocell

Outdoor MUE

Il. SYSTEM MODEL



Se € S is one of the possible states, whe$eis the set of

MBS changes MBS changes M x NM states for the system.
PRs PRES We defineV (n|S;, C(n) = i) as the accumulated reward
D | from timen till a finite horizonT when the MUE is occupying
MBS t channel, while the system state &. Our goal is to maximize
o : s V' (1]S,, %) based on the observation of channel sttat time
- Tayl I * % n = 1. EQ. (2) describes the future reward expression in our
\\ system.
dEIaV?d DCl FB%'ngthe FBS may cause V(n‘Sla (C(n) = Z) = mjax(ai (n), {bj (n) }j?éi)' 2)
received outdoor MUE interference

) _ ) o The first argumentg;(n), is the accumulated reward when
Fig. 2: Chasing the shadow scheme description.  \1gs chooses to keep the channel. The FBS gets a reRard
the FBS rate, and MUE has the same rate as the previous time

slot. Hencea is defined as:
N = 2, the channel gain is alternating between a high value i(n)

(good state) and a low value (bad state). We defipas the ai(n) = wlog(1 +~i(n)) + (1 — w)R+
signal to noise ration (SNR) of the channein statek and \E v 1S e 1) =
~*(n) as the SNR of channel at timen. The MBS has to sy (V(n+1[8(n +1),Cln +1) = 1)),
decide either to keep the MUE in the same channel or mov

into a new one based on the MUE diversity gain, FBS rewazA{e
and cost.

®)

ere E denotes expectation over the different states. The
cond oneh;(n), is the set of rewards when the MUE channel
is changed to channg‘l since there is a cost and the MUE

1. PROBLEM FORMULATION has a new rate due to the change of the channel.

We study the scheme in two cage$ case of heterogeneous  b;(n) = wlog(1 ++7(n)) + (1 — w)C+
channels, and will be studied in this section, ghglhomoge- _ (4)
TS AEs (1) (V(n+1[S(n +1),C(n +1) = j)).
neous channels where the channel charachteristics atécalen
for all PRBs. Homogeneous channels can be consideredife future reward is weighted by, where\ < 1. The weight
special case and will be discussed in the next section. In aurrepresents the importance of the MUE relative to the FBS.
study, the MBS decides between moving the outdoor MUBence, the fairness between the FUE and the MUE can be
to another channel or staying in the same channel. The FBusted by the parameter which can be set by the MBS.
only acquires outdated DCI from the MBS. The decision fan other words, increasing gives more priority to the MUE
the MUE to seek a new channel or stay in the same chanagkr the FUE. The expectation in the future reward term is
can be optimized by seeking maximum expected return for ii&th respect to the channel gaif's This MDP problem can be
decisions in an MDP formulation. solved using backward induction and the problem complexity
_ _ is O(T x NM x M).
A. Optimum Policy
Our design objective is to make the MBS decision 8 Greedy Policy
maximize the expected total reward, which is a weighted
sum of MUE and FUE performance. The problem can be We compare our policy with the greedy policy where the
formulated as an MDP. To define the MDP we need tH¥BS maximizes the MUE diversity gain regardless the FBS.
following notations. LetS(n) be the state vector at time, Greedy policy is exactly the same as optimal policy when
which contains the SNR values of all channel gains at time = 1 and A = 0. The decision policy can be obtained by
n including the current channel occupied by the MUE. Thigolving the following equation
vector is defined as

1 + 7 . 5
'Yl(n) 12339( (log(1+~7(n))) )
7*(n
IV. MDP COMPLEXITY REDUCTION
S(n) = SR I 1)
M (n) The MDP complexity depends on the number of available
C(n) channels and the time horizon. In this section we prove that

the MDP problem (generally can be executed as a table-look-
where we definédC(n) € A as the current channel at timg up algorithm) can be reduced to solving couple of equations
whereA = {1,2,---, M} is the set of possible channels thain the case of homogeneous channel without any performance
MUE can use including the currently occupied one. Henaegradation.



A. Reduction for 2 Homogeneous Channels Hence the first movement momelit, is the minimumék that

We consider two homogeneous channels where the tréﬁ—“snes the inequality
sition probabilities and the channel gains for each stage ar AR+ (py 4 py — 1)FH1 1
the same for all channels, then the channel indean be w —3 r<l-w)(R-C). (11)
removed to simplify notations. We assume that each channel Pt p2
has 2 channel states with self transition probabilitiegndp, If the decision atT’ — K is to move, then the decision at
and gainsy; and-~.. Due to the nature of the homogeneous = 1,---T — K — 1 is to move if and only if
channel and for the simplicity of notations, we redefine the
state at timen as S(n)=[current channel state, other channel wlog(l+71)+ (1 —w)C + AE(V(n + 1[52)) >

12
state]. In other words$; is when both channels are in good  wlog(1 + v2) + (1 — w)R + AXE(V (n + 1]S3)), (12)
state,S, is when the current channel is good and the other is
bad, S3 is the opposite, and is when both bad. where
Lemma 1. Channel switching could only happen 3. E(V(n+ 1]S5)) = p1(1 — p2)V(n + 1|S1) + prp2V(n + 1] S2)

The proof is in the appendix. The intuition behind is clear,

the I\;PIBS does not neF:aF:j to switch the channel if the current’ (-~ P11 = P2)V (14 11S5) + (1 = p1)paV(n + 1[54).

channel is good because the other channel is either worsd®6V (7 +1153)) = p1(1 — p2)V(n + 1]51) + prp2V(n + 1]S3)

the same, where switching introduces only a cost. Similarly + (1 — p1)(1 — p2)V(n + 1|S2) + (1 — p1)p2V (n + 1|S4).

if both channels are in bad states, the MBS decides to stay on i o

the same channel. By subtracting the two arguments, the threshold is given as
The following theorem can be used to complete the decision(1 —w)(R—C)

log(1 —log(1
matrix for S5 without solving the backward induction. +w(log(l +72) —log(1+ 1))+

. o e t 1
Theorem 1: If the following conditions are satisfied Ap1 +p2 — 1)(V(n+1]S3) — V(n+1]Ss)) Szay 0. (13)
1) move

Assuming that the decision at stage- 1 is to move, then the
(1 —w)(I =Ap1+p2 —)(R-C) <—wl, (6) gecision will be also to move for all stages frdmo n if and
whereT = log(1 + ) — log(1 + 1) on!y if Eq. (6) is satisfied. ' .
2) There existsk such that This means that the base station can solve Eq. (7) and obtain
the optimum value of which corresponds to the first moving
I < (1-w)(R—0C) 3, time, and then apply the condition at Eq. (6). If this coruiti
(7)° is satisfied, then the decision is always to move till stage 1.
That is to say, the complexity is reduced and the MBS can
I1‘{Prm the decision matrix by solving only 2 equations instead
channel. of solving the whole backward induction steps. Hence, the

Proof 1: At stageT, the necessary and sufficient conditioﬁleS calm fcIJHO\IiV an i?sy optimum policy instead of forming
to switch channel in S3 is a complex lookup table.

wF)\k+1(p1 + p2 — 1)k+1 —1
p1+p2 —2

K:min{k:

then, channel switching happens i3 for stagel to 7' —
K otherwise, the optimal decision is to stay in the curre

R+ wlog(l+v2) < C+wlog(l+ v1). (8) B. Generalizing for Multiple Homogeneous Channels

Suppose the decision at tinffe— K + 1 is to NOT move, the ~ When channels are homogeneous, we can reduce the num-
necessary and sufficient condition to moveTat K can be Der of states fromdM x 2% to 2. By the nature of the

obtained as follows: homogeneous channel, the states that have the same current
Foralln>T— K channel and the same number of good and bad channels
are redundant. For instance, whéd = 3, the states [G
V(n[S1) = V(n|S2) = Vy(n). ©) B G] and [G G B] are equivalent and one of them can be
V(n|S3) = V(n|Sy) = Vip(n). removed. Specifically, ley, k = 1,2,--- M, represents that

the current channel is good, and in addition there dre- £
good channels and bad channels. On the other hangj,,
Vg(n) =(1 —w)R+wlog(1+ ) + A(p1Ve(n+1) + (1 —p1)Ve(n+ 1))k = M + 1, M + 2,---2M, represents the current channel
Vp(n) =(1 — w)R + wlog(l + 72) + A(p2Vip(n + 1) + (1 — p2)Vy(n + 1))is bad and there ar2M — k£ good channels anél — M bad
channels. Again, it is clear that when the current channel is
good, the decision is always to stay regardless the stateyof a
Apr+p2 — 1) (VT — K +1153) = V(T - K+ 1)+ of the other channels. Switching will happen only when the
stay MUE is currently on the bad channel and one or more of the
(I —w)(R—=C)+wl m%\/eo- other channels are in a good state. In stagsk > M + 1,
(10) the MBS decides either to stay in the same bad channel or

Hence, the recursion can be written as

The condition to move at stadé — K is



move to one of the other good channels. Total reward comparison

24 ‘
V(n|S;) =
: 9o --0--0---06--6--0---0--6-= D
wlog(1 4 42) + (1 — w)R 4+ NE(V (n + 1]S;))
max
wlog(l +71) + (1 — w)C + AE(V (n + 1|S,)) 2 1
(14) 18 ]
N
Following the same argument of Eq. (9) to obtain the fir: %1.6 — Total MDP Reward
moving moment, the values of the rewards for all the channe & " - - -Total Greedy Reward
that are currently in good state are the same and eqigl(io o —MUE MDP
for all n > T — K. Similarly, the ones that are currently on ¢ g 12 - -MUE Greedy
[0}
bad channel have equal reward3(n). 5 FBS MDP
V(n|Sy) =--- = V(n|Su) = V,(n). (15) 0 FBS greedy ]
V(n|Sy41) =+ = V(n|S2m) = Vi(n). 06
By subtracting the two arguments, we obtain the same rest 04 ‘ ‘ ‘ ‘
as Eqg. (10) which is the same recursion, hence, the sameiclc 0 02 0.4 06 08 1
form solution obtained in Theorem 1. Primary Weight (w)
V.S R Fig. 3: Greedy versus our optimal scheme.
. SIMULATION RESULTS
In this section we evaluate the performance of our schen Total reward comparison
In our simulations we have finite horizofi = 2000. We 24 T oo Vo
glso ha\{eR =1 apd C = —2. The performance shown - 7 7 - Total Greedy Reward
in the simulations is normalized over the total number ¢ - + - MUE Greedy
channels, states, and the time horizon. We conducted 2 ooy |
simulations in two cases. The first one assumes that | Lol |
transition probabilities are known and the second assuha¢st <
they are estimated with errors to study the robustness of ¢ % 16
scheme. All simulations are conducted for one femtoceli th &
follows one of three outdoor users. Each user has a two st E“
channel. § 12} ,
V]
A. Perfect Transition Probabilities 1 1
08r 4
We assume that the transition probabilities of all the cha
nels are known. We draw the total MDP reward, FBS rewar 06 .
and the MUE rate for the optimal MDP scheme versus tt ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
greedy algorithm. As shown in Figure 3, as the weight ir % o1 02 03 o4 05 06 o7 08 03 1

creases, the gap between the greedy scheme and ours dgcrt
because of the increasing emphasis on MUE. In the case or ) _
small weights, we emphasize the FBS over the MUE. Hend:é,g_- 4: Greedy versus our optimal scheme for different SNR
the policy is to always stay and the FBS reward equalgto ratios.

The values of self transition probabilities abes, 0.85, and
0.9.

In Figure 4, all the channels hagestates with differenty:
and~4 values. We plot the different rewards versus the ratio In this subsection, we show the robustness of our scheme
7% /4%, which we assume in this setup to be the same for allhen estimation errors exist in the transition probaleiitiin
i. We call this ratioL. As shown in the figure, a6 increases, Figure 5, the total reward, MUE rate, and FBS reward are
the optimum MDP and FBS reward increases. As the rafmotted by applying the optimal scheme, however using the
becomes closer to, the greedy policy becomes closer to thestimated transition probabilities instead of the realsore
optimal. The explanation is that the gain value of the besur simulations,R = 3, C = —2, and the maximum error
channel is better than all other channels even in their gobdtween the true transition probabilities and the estichatee
states. is 0.3. As shown in the figure when the weight is small

B. Channel Uncertainty



or large, the rewards are as the optimal ones because thBroof 2:

impact of transition probabilities is not significant. Aetemall { wlog(1+ ) + (1 — w)R + AE(V (n + 1|S1))

wlog(l+ ) + (1 —w)C + AE(V(n + 1|S1))
(16)

weights, the policy is always to stay regardless the tramsit 1/ (n|S;) = max
probabilities. Similarly, at large weights the policy is eegdy
policy that will maximize the current MUE rate. The maximum
loss in the total reward is aboR6%. In summary, the scheme H€Ncea1(n2]51) > by(n[S1), where
E(V(n+1[S1)) =p2V(n +1]S1) + p1(1 — p1)V(n + 1]S2)+

(1 — pl)p1V(n + 1|S3) + (1 —p1)2V(n + 1|S4)
Similarly we can prove the same fét,. Repeating the same
steps forSs,

wlog(l+ 1) + (1 —w)R + AE(V (n + 1]52))
wlog(l+72)) + (1 —w)C + AE(V (n + 1|S5))
17)

25 V(n|S2) = max {

) 2 By subtracting the 2 arguments, the threshold is
§ (1 —w)(R — O) + w(log(1 +m) — log(1 +12))+
El.aa—-fe---o---e---d 1 stay
g (1 +p2 — 1)(V(n+1]S2) — V(n +1]S3)) = 0,
@ |- - -Total reward with error move
1 - -MUE reward with error 1 which is always positive for slowly varying channel, i.g;,
FBS reward with error and p, are greater than 0.5 and it is clear tHatn|S;) >
| — Total optimal reward | V(n|S3) for all n. Hence the decision will always be to stay.
0.8 — mue optimal reward
FBS optimal reward ACKNOWLEDGMENT
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