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Abstract. We propose a content aware scheduler to allocate resources
for video delivery on the downlink of a Long Term Evolution (LTE) net-
work. We consider multiple users subscribe to a video streaming service,
and request videos encoded in H.264 Scalable Video Coding format. The
scheduler maximizes the average video quality across all users by as-
signing resource blocks based on their device capabilities, link qualities,
and available resources. We measure video quality using two full refer-
ence metrics: peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) index. We formulate the video delivery problem first as an in-
teger linear program (ILP), and then reduce it to the multiple choice
knapsack problem (MCKP). To solve the MCKP, we propose two fast
heuristics with reduced processing overhead at the eNodeB, and a fully
polynomial-time approximate scheme (FPTAS) using dynamic program-
ming and profit-scaling. Our evaluation results indicate that the heuris-
tics are within a factor of 1

2
, and the FPTAS is very close to the optimal

obtained from an ILP solver. We also propose a signaling mechanism
to implement the content aware scheduler in existing LTE systems, and
evaluate the impact of signaling delay on video distortion using both
indoor and outdoor measurements collected from AT&T and T-Mobile
networks.

Keywords: LTE, Scalable Video Coding, content aware optimization,
scheduler, network optimization, FPTAS, water-filling.

1 Introduction

The continuous growth in cellular data traffic is encouraging service providers to
introduce new services and compete with each other to deliver the highest quality
at the lowest price. Multimedia delivery is one of the most rapidly evolving
services, as smart handheld devices (e.g., iPhone, iPad, tablet) and high-speed
4G technologies (e.g., LTE, WiMAX) are fast getting adopted [1]. It is projected
that 70% of the cellular data traffic will be from video by 2016 [2].

The user equipments (UEs) in a cellular network can be very diverse, ranging
from battery and hardware constrained cell phones, to more powerful tablets
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with sophisticated transcoding features. Different users are also susceptible to
different video qualities due to limited bandwidth and random channel variations
resulting from shadowing, multipath fading, etc. These factors can cause the UE
buffer to underflow during video playback. The eNodeB (term used for LTE
base transceiver station) can also run out of resources without satisfying all the
requests. In particular, when a large number users demand high quality videos
at the same time, severe buffer underflows may occur for multiple users.

The H.264 Scalable Video Coding (SVC) [8] has emerged as a suitable coding
standard for compressing high-quality video bitstreams. It supports a variety of
devices using three different scalability options: (1) temporal scalability, where
complete frames can be dropped from a video using motion dependencies; (2)
spatial scalability, where videos are encoded at multiple resolutions; and (3) qual-
ity scalability, where decoded samples of lower qualities can be used to predict
samples of higher qualities to reduce the bit rate required to encode the higher
qualities. A UE can use any of these scalability options, or combine them based
on the type of the video and user requirements. By leveraging multiple profiles
supported by SVC that differ in compression, bit rate, and size, the video quality
can be adapted based on link quality, device capability, and available resource
blocks (referred to as physical resource blocks or PRBs in LTE).

There has been a lot of work in content aware networking for wireless video
delivery, including choosing the best network code for video transmission over
mesh networks [3], cross-layer solution with more protection for packets carrying
important parts (e.g., I-frames) [4], and streaming SVC videos over WiMAX [7].
A similar method to [4] for content aware video delivery on the uplink of a
wideband code division multiple access (WCDMA) network is proposed in [6].
Video frame scheduling under deadline constraints in the downlink is discussed
in [5], while SVC tools for wireless are introduced in [8]. The performance of
SVC over LTE is characterized in [9].

In this paper, we present a content aware PRB scheduler to deliver SVC
encoded videos to multiple users on the downlink of an LTE network. Our goal
is to maximize the average video quality across all users for a fixed number
of PRBs. The PRB scheduler in the eNodeB decides the profile levels of the
videos, and the number of PRBs to assign to each user depending on its decoding
capability and link quality between the eNodeB and the UE. We assume that
these link qualities can be estimated from feedback signals, such as channel
quality indicator (CQI) and hybrid automatic repeat request (HARQ).

Our key contributions are the following:

– We formulate the PRB scheduling problem as an integer linear problem
(ILP), and reduce it to the multiple choice knapsack problem (MCKP) [15].

– We propose a greedy heuristic and a water-filling heuristic to solve the
MCKP with reducing processing complexity at the eNodeB.

– We also propose a fully polynomial-time approximation scheme (FPTAS)
using dynamic programming and profit-scaling to solve the MCKP.

– We compare the performance of the heuristics and the FPTAS with the
optimal by solving the ILP using CPLEX [18], a state-of-the-art ILP solver
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developed by IBM. Our results indicate that the heuristics perform within
a factor of 1

2 , and the FPTAS is very close to the optimal.
– We propose a signaling mechanism to implement the content aware PRB

scheduler in an existing LTE system, and evaluate the impact of signaling
delay on video distortion using both indoor and outdoor (urban and subur-
ban) measurements collected from AT&T and T-Mobile networks.

The rest of the paper is organized as follows. In Section 2, we describe our
system model and formulate the PRB scheduling problem. In Section 3, we first
map the PRB scheduling problem to the MCKP, and present two heuristics
and an FPTAS to solve the MCKP. Section 4 presents our evaluation results of
the proposed heuristics and the FPTAS. In Section 5, we describe a signaling
mechanism to implement the content aware PRB scheduler in an existing LTE
system, and also present our evaluation results of this modified architecture
based on measurement data. Finally, we conclude in Section 6.

2 LTE System Model

In this section, we first describe a high-level architecture of the content aware
PRB scheduler in an LTE downlink, and define two video quality metrics. We
then present the LTE video model and formulate the PRB scheduling problem.

2.1 Content Aware LTE Downlink Architecture

We consider the downlink of a single eNodeB in an LTE network where multiple
users request SVC-encoded videos from a video server (e.g., YouTube). The Core
Network (CN) establishes a non-guaranteed bit rate Evolved Packet System
(EPS) bearer that provides Internet Protocol (IP) services to the UEs. The
scheduler at the eNodeB allocates a certain number of PRBs to send the video
as a unicast to each UE. A schematic diagram of this architecture is shown in
Figure 1. The solid lines indicate different interfaces that already exist between
different nodes in the EPS bearer. The dotted lines are the new conceptual
interfaces we propose, the implementation of which is described in Section 5.

We envision that the content aware PRB scheduler is conceptually associated
with the eNodeB. When a UE requests a video, the video server responds with
the quality and transcoding information of that video. The eNodeB obtains this
information from the UE, and sends it along with the set of available PRBs to
the PRB scheduler. The PRB scheduler also obtains the channel quality from
the UE, and then computes the number of PRBs and a video rate to be assigned
to the UE corresponding to an SVC profile level. The profile level is sent to
the UE, and the PRB assignment is sent to the scheduler at the eNodeB. The
scheduler then allocates the assigned number of PRBs to the video flow.

In the downlink physical layer, LTE uses orthogonal frequency-division multi-
ple access (OFDMA), and allocates radio resources in both time and frequency
domains. The time domain is divided into LTE downlink frames, which are split
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Fig. 1. A content aware architecture for video delivery over LTE downlink. The solid
lines indicate interfaces that already exist in an LTE system; the dotted lines are the
new conceptual interfaces proposed to implement the PRB scheduler.

into Transmission Time Intervals (TTIs), each of duration 1 millisecond (ms).
The LTE downlink frame has a duration of 10 ms corresponding to 10 TTIs.
Each TTI is further subdivided into two time slots, each of duration 0.5 ms,
and each 0.5 ms time slot corresponds to 7 OFDM symbols. In the frequency
domain, the available bandwidth is divided into subchannels of 180 kHz each,
and each subchannel comprises 12 adjacent OFDM subcarriers. As the basic
time-frequency unit in the scheduler, a PRB consists of one 0.5 ms time slot and
one subchannel. The minimum unit of assignment for a UE is one PRB, and
each one can be assigned to only a single UE. Additionally, the LTE downlink
makes use of adaptive modulation and coding.

It is important to note that the content aware PRB scheduler only determines
the number of PRBs needed for each UE, but not the specific PRBs that will
finally be allocated. This job is left for a TTI level scheduler, which is a key
component of the existing eNodeB design. Several TTI level schedulers that
map PRBs to UEs have been studied in literature [27]. We propose to integrate
the content aware PRB scheduler with any given TTI level scheduler using a
two-level approach, similar to the one proposed in [28]. The PRB scheduler
behaves like an upper-level scheduler, assigning the PRBs on a frame-by-frame
basis. Within a frame, any TTI level scheduler that maximizes throughput or is
proportionally fair can be used to map the PRBs to the UEs.

2.2 Video Quality Metrics

The content aware PRB scheduler requires the video quality and transcoding in-
formation to compute a PRB assignment. In this paper, we use two full-reference
metrics that use the distortion-free version of a video as the reference. The first
one is peak signal-to-noise ratio (PSNR) [24], and the second one is structural
similarity (SSIM) index. For a video stream, these metrics are computed by av-
eraging their values over all the video frames. For a frame of size u×v (in pixels),
the PSNR of the ith frame can be computed as [24]:

PSNR(i) = 10 log10

(
MAX2

MSE(i)

)
, (1)
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where MAX is the maximum possible pixel value (typically, 255), and MSE is
the mean square error, defined as:

MSE(i) =
1

uv

u−1∑
k=0

v−1∑
l=0

[Ii(k, l)−Ri(k, l)]
2, (2)

where Ii and Ri represent the i
th frames of the received video and reference video,

respectively. Thus, the video PSNR is given by: VPSNR = 1
m

∑m
i=0 PSNR(i),

where m is the total number of frames in the video.
The second metric SSIM takes into account the inter-dependency between

different pixels, and, therefore, more consistent with the perception of the human
eye [10]. The SSIM of the ith frame can be computed on two windows x and y
as [24]:

SSIMx,y(i) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
, (3)

where μx and σ2
x are the mean and variance, respectively, for window x; like-

wise, μy and σ2
y are the mean and variance, respectively, for window y. The

covariance of x and y is σxy. The two variables c1 and c2 are to stabilize the
division with weak denominator. Thus, the video SSIM is given by: VSSIM =
1
m

∑m
i=0 SSIM(i).

The SVC standard [8] defines 21 profiles that differ in capabilities and target
specific classes of applications. The term “level” specifies a set of constraints
indicating the required decoder performance for a certain profile, such as maxi-
mum picture resolution, frame rate, bit rate, etc. Table 1 shows the VPSNR and
VSSIM values for the movie trailer MIB3 encoded at different SVC levels. The
reference video is encoded at Baseline Level 4.

Table 1. MIB3 trailer attributes for different SVC levels

Levels/Attributes VPSNR VSSIM Rate (Kbps)

L1.3 (96 × 72) 36.7617 0.72761 146

L2.2 (192 × 144) 37.684451 0.8625723 304

L3.0 (320 × 240) 38.36902 0.9254554 452

L4.0 (640 × 480) Reference Reference 1162

2.3 Video Model

We consider a total of N UEs and M available PRBs in the LTE system, with
each PRB having a fixed bandwidth, denoted by B. Suppose each UE i can
decode up to a set Li = {lij} of video profile levels. Each profile level lij ∈ Li

requires a certain number αij of PRBs depending on channel conditions for
smooth video playback without incurring buffer underflow. We assume that all
the M PRBs are available to adapt the video quality only, and are not used
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for any other purpose, such as reliability or other application requirements. We
assume that each UE i uses a forward error correction (FEC) code for protection,
with coding rate Ti and modulation schememi. Suppose Ri(lij) denotes the total
downlink rate required for UE i to receive the video at level lij including all levels
below it. This rate can be computed as [23]:

Ri(lij) = αijmiTiB log2

(
1 +

Pgi
N0

)
, (4)

where P denotes the transmission power of the eNodeB; gi is the channel gain
from the eNodeB to UE i; andN0 is the noise power. We assume that the channel
gain gi can be estimated using CQI measurements.

Suppose Qi(lij) denotes the average quality observed while receiving the video
at level lij . Since we measure video quality using VPSNR or VSSIM, Qi(lij)
accordingly refers to these quantities when UE i receives the video at level lij .
We assume that there exists a monotonic, one-to-one relationship between the
observed video quality and the corresponding rate.

2.4 PRB Scheduling Problem Formulation

We assume that the eNodeB is capable of sending videos at the basic profile level.
To reduce distortion, however, a higher level is required, but at the expense of
more number of PRBs. Depending on the link quality and available number
of PRBs, the scheduler at the eNodeB chooses a certain level lij , and assigns
the corresponding number αij of PRBs to each UE i. Suppose xij is a decision
variable that is 1 if level lij is assigned to UE i, and 0 otherwise. We consider
that these levels are chosen in such a way that it maximizes the average video
quality over all UEs. We formulate this PRB assignment problem as:

maximize

N∑
i=1

∑
lij∈Li

xijQi(lij)

subject to

N∑
i=1

∑
lij∈Li

xijαij ≤ M

∑
lij∈Li

xij = 1, ∀i

variables xij ∈ {0, 1}, ∀i, ∀lij ∈ Li

(5)

where the first constraint ensures that the total number of PRBs assigned to the
UEs does not exceed the available number of PRBs, and the second constraint
chooses exactly one profile level for each UE i. This is an ILP because of the
integer variables xij , and, therefore, NP-hard.

3 Solutions to PRB Assignment Problem

In this Section, we first reduce the content aware PRB scheduling problem into
the MCKP, and then present two fast heuristics and an FPTAS to solve it.
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3.1 Reduction to Multiple-Choice Knapsack Problem

The PRB assignment problem (5) can be cast as the Multiple-Choice Knap-
sack Problem [15], which is a generalization of the classical 0-1 Knapsack Prob-
lem [13]. A similar reduction for video delivery over WiMAX is given in [7]. In
MCKP, we are given a set of items subdivided into N mutually disjoint classes,
K1, . . . ,KN , and a knapsack of total capacity c. Each item j ∈ Ki has a profit
pij and a weight wij . The goal is to choose exactly one item from each class so
as to maximize the total profit without exceeding the capacity. The MCKP can
be written as:

maximize

N∑
i=1

∑
j∈Ki

pijyij

subject to

N∑
i=1

∑
j∈Ki

wijyij ≤ c

∑
j∈Ki

yij = 1, ∀i

variables yij ∈ {0, 1}, ∀i, ∀j ∈ Ki

(6)

where yij is the decision variable that takes the value 1 if item j is chosen from
class Ki, and 0 otherwise.

It is easy to see the mapping between the PRB assignment problem and the
MCKP. The number of classes in the MCKP corresponds to the number of UEs,
and the knapsack capacity c corresponds to the number M of available PRBs.
The items in each class are the videos encoded at different profile levels. The
decision variable yij corresponds to the variable xij that decides whether or not
to choose level lij for UE i. The weight wij corresponds to the number of PRBs
αij assigned to UE i, and the profit pij is the video quality Qi(lij) experienced
by UE i when receiving the video at level lij .

An important thing to decide is how frequently to solve the MCKP optimiza-
tion, which defines the optimization horizon for the PRB assignment problem.
The reason to consider this is the following: As channel conditions change over
time, the solutions returned by the optimization might become stale if updated
channel parameters are not used. Therefore, it is necessary to rerun the opti-
mization whenever this happens, and also when the UEs start or end a video
session. We discuss this issue in Section 5.

3.2 Fast Heuristics for PRB Assignment

The existing work on MCKP [15] offers various approximation algorithms that
are not easily implementable in practical LTE networks. We propose two fast
and simple heuristics that are easy to implement and show good performance.

The first heuristic (Algorithm 1) is a greedy algorithm similar to [16] with
asymptotic worst-case running time O(

∑
i |Li|). The second heuristic (Algo-

rithm 2) follows a technique similar to Water-Filling [22] by first assigning PRBs
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to the users with better channel conditions, and then distributing the rest of the
PRBs to other users. Note that, typically the number of users served by a sin-
gle eNodeB can be at most a few hundreds, and therefore, the sorting in both
heuristics can be accomplished efficiently using any standard sorting algorithm.

Algorithm 1. Greedy heuristic for content aware PRB assignment.

1. For each UE i, sort the profile levels in increasing order of required PRBs. 2.
Pick the UEs in a round robin fashion.
3. For each UE i, choose the highest level lij∗ from the sorted sequence that
does not exceed the remaining PRB budget out of M total.

Algorithm 2. Water-Filling heuristic for content aware PRB assignment.

1. Sort the UEs in descending order of channel gains.
2. Pick the UEs from this sorted sequence starting from the first.
3. Follow steps 1, 2, and 3 in the Greedy heuristic, i.e., for each UE i, assign the
highest profile level lij∗ that does not exceed the remaining PRB budget.

3.3 An FPTAS for MCKP Using Dynamic Programming

The classical 0-1 Knapsack Problem admits an FPTAS via dynamic program-
ming and profit-scaling [16]. Using a similar approach, we present an FPTAS for
the MCKP to solve the PRB assignment problem. We first formulate a dynamic
program.

Let yi(q) denote the minimum weight of a solution to MCKP with total profit
q, and classes K1, . . . ,Ki. If no solution exists, we set yi(q) = c+ 1. We use an
upper bound U to specify the termination point of this (finite horizon) dynamic
program. We initialize y0(0) = 0, and y0(q) = c + 1, ∀q = 1, . . . , U . Then, the
recursion can be written as:

yi(q) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi−1(q − pi1) + wi1, 0 ≤ q − pi1

yi−1(q − pi2) + wi2, 0 ≤ q − pi2
...

yi−1(q − pini) + wini , 0 ≤ q − pini

(7)

where ni is the number of items in class Ki.
If the argument to the min function is empty, it returns c + 1. The optimal

profit is max{q|yN (q) ≤ c}, with a runtime complexity O(U
∑N

i=1 ni) = O(nU),

where n =
∑N

i=1 ni, is the total number of videos across all classes. This type of
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recurrence admits an FPTAS [16]. The approach relies on appropriately scaling
the profits in the above recursion. Accordingly, we define a new set of profits,
p̃ij = �pij

K �, with K appropriately chosen to satisfy the tight inequality K ≤ εz∗
N ,

where z∗ is the optimal value of the objective function in the MCKP, and ε is a
positive quantity that decides the approximation factor. With this condition is
satisfied, the DP has an approximation factor (1− ε) [16]. The following analysis
shows how to choose the value of K.

Let pmax be the item with the highest profit across all classes. If we choose
K = εpmax

N , then the above condition is clearly satisfied. Let the optimal value
of the scaled problem be z∗s . Then, it is clear that z∗s ≤ Np̃max, where p̃max =

�pmax

K �. Since p̃max ≤ pmax

K = N
ε , we obtain z∗s ≤ N2

ε . Consequently, we can

replace the upper bound U in the recursion by N2

ε . Since U can be computed in

linear time, we get an overall running time of O(nN
2

ε ). The dynamic program
using this technique of profit scaling is described in Algorithm 3. The objective
value of the MCKP with the original profits can be obtained by examining the
items that are chosen from each class in the solution of the algorithm.

Algorithm 3. Dynamic Program Scaling of Profits

Compute an upper bound U .
Set y0(0) = 0, and y0(q) = c+ 1, ∀q = 1, . . . , U .
for i = 1, . . . , N do

for q = U, . . . , 0 do
yi(q) = minj∈{Ki|q≥p̃ij}(yi−1(q − p̃ij) + wij).

z∗s = max{q|yN (q) ≤ x}.

4 Performance Evaluation

In this section, we compare the performance of the two heuristics and the FPTAS
with the optimal obtained from CPLEX.

4.1 Experimental Setup

In our simulations, we uniformly distribute the UEs around the eNodeB, and
randomly map each UE to a video. We use LTE system parameters defined
in the 3GPP standard [21]. The focus of this study is primarily in measuring
the performance at the physical and MAC layers. We acknowlege that different
content distribution networks (CDNs) may employ different techniques at higher
layers which might affect the metrics evaluated here. The transmission power P
of the eNodeB is 46 dBm; the noise figure N0 is 7 dB; the transmission frequency
F is 925 MHz; the eNodeB antenna height hb is 30 meters; and the UE antenna
height hm is 1.5 meters. We follow the path loss model described in [17], and use
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the statistical tool R [19] to generate the channel model. The path loss G for a
UE that is d meters away from the eNodeB is given by:

G = 69.55 + 26.16 log10(F )− 13.82 log10(hb)

−ch+ (44.9− 6.55 log10(hb)) log10(d), (8)

where the parameter ch depends on the city size. The number of available PRBs
M in our simulation is set to 50, which is the same number of PRBs in an LTE
frame when the channel bandwidth is 10 MHz. The spectral efficiency miTi for
UE i depends on the CQI and is given in the LTE standard [21].

4.2 Simulation Results

In our simulation, we assume that a user experiences buffer underflow if it is not
assigned the required number of PRBs to support a download data rate at least
equal to the playback rate. We first compare the performance of the Greedy
and the Water-Filling heuristics with the optimal. The results for VPSNR and
VSSIM are averaged over 1000 iterations, where, at each iteration, we randomly
map the UEs to the videos and generate channel conditions according to (8).

As shown in Figure 2(a) and 2(b), the three plots representing Greedy, Water-
Filling, and Optimal follow a similar trend, i.e., the video quality decreases
with increasing number of UEs. This is expected because the number of PRBs
allocated per UE decreases with increasing number of UEs for a fixed PRB
budget. We also note that the difference in VPSNR and VSSIM values obtained
from the heuristics and those of the optimal increases with more number of
users. However, the difference is less predominant for the Water-Filling algorithm
than the Greedy one. This is because of the following: In the Greedy algorithm,
the UEs are picked up at random and assigned PRBs for the highest profile
level possible. In contrast, the Water-Filling algorithm first sorts the UEs in
decreasing order of channel gains, and then assigns the PRBs corresponding to
the highest levels. Thus, for the same rate requirement between two users, the
user with good channel condition will need fewer PRBs in the Water-Filling
algorithm, and, therefore, more PRBs will be left to satisfy the profile levels of
other users. In the Greedy algorithm, the chance of picking up a user with good
channel condition decreases as the number of users increases, and so it performs
increasingly worse as compared to the Water-Filling algorithm for more number
of users.

We now compare the performance of the FPTAS with the optimal obtained
from CPLEX. As discussed before, the asymptotic running time of the FPTAS is

O(nN
2

ε ), where n is the total number of videos, and ε decides the approximation
factor, which is at least (1− ε) in our implementation of the dynamic program.
We applied the FPTAS for the same channel and video models for three different
values of ε, namely, 0.25, 0.5, and 0.95. The results for VPSNR, shown only for
ε = 0.5 and ε = 0.95 in Figure 3(a) and 3(b), respectively, indicate that the
FPTAS performs very close to the optimal.
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Fig. 2. Comparison of (a) VPSNR and (b) VSSIM obtained from the Greedy and
Water-Filling heuristics with that of the optimal from CPLEX

5 Content Aware LTE Architecture and Signaling

In this section, we first propose a new signaling mechanism and a modification
to the LTE architecture to implement the PRB scheduler. We then evaluate the
performance of this modified architecture using measurement data.

5.1 Signaling Mechanism and Architecture Modification

We reuse the IP services of the EPS bearer to implement the content aware PRB
scheduler. The signaling mechanism, as shown in Figure 4, takes place as follows:
Upon receiving a video request from the UE, the video server responds with the
levels, rates, and VPSNR/VSSIM information of that video. The UE sends this
information to the eNodeB, which, in turn, forwards it to the PRB scheduler. The
UE also sends the CQI and the Reference Symbol Received Power (RSRP) to the
PRB scheduler. The PRB scheduler also obtains the set of available PRBs from
the eNodeB, and then runs the optimization to compute the PRB assignment
and the profile level assignment for each UE. The profile level is sent to the UE,
while the PRB assignment is sent to the scheduler in the eNodeB. Finally, the
UE requests the video at the assigned profile level from the video server.

We note that there can be delays associated with signaling that may affect the
performance of the algorithm. This may require re-running the optimization. We
show the effect of this delay under various channel scenarios, and give a method
to choose when to re-run the optimization.

We propose to implement the PRB scheduler at two different places, moti-
vated by the emerging trend of software defined networking (SDN) toward an
open architecture at the switches and routers. The first is to include the PRB
scheduler in the Mobility Management Entity (MME), where it can handle com-
munications and negotiations between the server and the network. The MME
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Fig. 3. Comparison of VPSNR obtained from the FPTAS and the optimal from
CPLEX for different values of ε: (a) ε = 0.5, and (b) ε = 0.95

can keep track of the PRBs assigned to the UEs, and run the optimization with
appropriate parameters during a handover. Although there is one instance of the
PRB scheduler for each eNodeB, they are all located within a single MME. The
PRB scheduler can also be placed at the eNodeB itself. However, this has some
disadvantages, the biggest one being the difficulty of modifying every eNodeB to
accommodate the PRB scheduler. We note that there is no security vulnerability
of breaching user privacy in this modified architecture. The eNodeB treats each
video simply as another flow, and it is the UE that requests a content aware
profile level and PRB assignment.

5.2 Measurement Based Evaluation

We evaluate the performance of the modified architecture using real data sets
collected from AT&T and T-Mobile networks by doing a drive-test and mea-
suring delays using an Android device and Qualcomm eXtensible Diagnostic
Monitor (QxDM) [20]. A sample plot for an outdoor suburban measurement
data is shown in Figure 5. The plot captures four quantities: reference signal
received power (RSRP), reference signal received quality (RSRQ), received sig-
nal strength indicator (RSSI), and CQI variation, as a time series for about 14
minutes. The data is then fit into a lognormal distribution, as shown in Fig-
ure 6(a), which is then used to obtain the urban data. The outdoor urban data
is generated using the spatial channel model in [25].

The PRB scheduler depends on UE reports sent to the eNodeB. There is
a network delay between the server and the UE, which can be tens to a few
hundreds of milliseconds. Thus, depending on the environment, the channel con-
ditions may change between the time the UEs request the video profile lev-
els determined by the PRB scheduler, and the time the server starts sending
the packets. As a result, the decisions taken by the scheduler may be obsolete.
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Fig. 4. Signaling to implement the content aware PRB scheduler in LTE
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Fig. 5. RSRP, RSRQ, RSSI, and CQI data in an outdoor suburban environment

We measure this delay in AT&T and T-Mobile networks for different technolo-
gies. For an LTE network, the delay is 50-150 ms; for an HSDPA+ network it is
160-450 ms; and for an on-campus Wi-Fi network, the delay is 7-20 ms.

We evaluate the impact of this signaling delay on video distortion for both
indoor and outdoor environments. Figure 6(b) shows the distortion per user in
the outdoor for both urban and suburban areas. We observe that the impact of
delay becomes more predominant with increasing number of users. We also see
that the urban environment has more distortion than the suburban one. This
is due to more severe variation in link quality in the urban environment than
the suburban one, and can result from more multi-path fading, shadowing, and
Doppler effect. The indoor environment has (plot not shown here) very little
effect on distortion due to negligible variation in channel conditions.
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Fig. 6. (a) A Lognormal fit to the RSRP in an outdoor suburban environment; (b)
Distortion as a function of the number of users in both urban and suburban outdoor
environments for different delays; UD: urban delay; SD: suburban delay

6 Conclusion

We propose a content aware PRB scheduler for downlink video delivery in LTE
based on SVC. The eNodeB in our scheme maximizes the average video quality
across all users based on their link qualities, device capabilities, and available
PRBs. We propose two fast heuristics and an FPTAS to solve this optimization
problem, and compare their performance with the optimal. Our results show that
the heuristics are a factor 1/2 away from the optimal, while the FPTAS is very
close to the optimal. We also propose a signaling mechanism and a modification
to the LTE architecture to implement the PRB scheduler. We evaluate the effect
of signaling delay on this modified architecture using real measurement data. Our
results show that, even after factoring in real channel variations and delays, the
PRB scheduler still performs very well.
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